Urban impacts on regional carbonaceous aerosols: case study in central Texas.
نویسندگان
چکیده
Rural and background sites provide valuable information on the concentration and optical properties of organic, elemental, and water-soluble organic carbon (OC, EC, and WSOC), which are relevant for understanding the climate forcing potential of regional atmospheric aerosols. To quantify climate- and air quality-relevant characteristics of carbonaceous aerosol in the central United States, a regional background site in central Texas was chosen for long-term measurement. Back trajectory (BT) analysis, ambient OC, EC, and WSOC concentrations and absorption parameters are reported for the first 15 months of a long-term campaign (May 2011-August 2012). BT analysis indicates consistent north-south airflow connecting central Texas to the Central Plains. Central Texas aerosols exhibited seasonal trends with increased fine particulate matter (< 2.5 microm aerodynamic diameter, PM2.5) and OC during the summer (PM2.5 = 10.9 microg m(-3) and OC = 3.0 microg m(-3)) and elevated EC during the winter (0.22 microg m(-3)). When compared to measurements in Dallas and Houston, TX, central Texas OC appears to have mixed urban and rural sources. However central Texas EC appears to be dominated by transport of urban emissions. WSOC averaged 63% of the annual OC, with little seasonal variability in this ratio. To monitor brown carbon (BrC), absorption was measured for the aqueous WSOC extracts. Light absorption coefficients for EC and BrC were highest during summer (EC MAC = 11 m2 g(-1) and BRC MAE365 = 0.15 m2 g(-1)). Results from optical analysis indicate that regional aerosol absorption is mostly due to EC with summertime peaks in BrC attenuation. This study represents the first reported values of WSOC absorption, MAE365, for the central United States. Implications: Background concentration and absorption measurements are essential in determining regional potential radiative forcing due to atmospheric aerosols. Back trajectory, chemical, and optical analysis of PM2.5 was used to determine climatic and air quality implications of urban outflow to a regional receptor site, representative of the central United States. Results indicate that central Texas organic carbon has mixed urban and rural sources, while elemental carbon is controlled by the transport of urban emissions. Analysis of aerosol absorption showed black carbon as the dominant absorber, with less brown carbon absorption than regional studies in California and the southeastern United States.
منابع مشابه
Spectro-microscopic measurements of carbonaceous aerosol aging in Central California
Carbonaceous aerosols are responsible for large uncertainties in climate models, degraded visibility, and adverse health effects. The Carbonaceous Aerosols and Radiative Effects Study (CARES) was designed to study carbonaceous aerosols in the natural environment of the Central Valley, California, and learn more about their atmospheric formation and aging. This paper presents results from spectr...
متن کاملInvestigation of Rural-Urban Migration as the Consequence of Regional and International Wars (Case of Study: Ahwaz City as the Empirical Experiment of Immigration in Iran)
Khuzestan province and other western provinces of the country have been mostly affected by the impacts of the imposed war of Iraq against Iran and due to this impact have experienced special changes. As one of these changes, we could mention the phenomenon of the migration. These areas have experienced different forms of migrations such as exterior, interior, return migration and even the accep...
متن کاملClimate response due to carbonaceous aerosols and aerosol-induced SST effects in NCAR community atmospheric model CAM3.5
This study used the Community Atmospheric Model 3.5 (CAM3.5) to investigate the effects of carbonaceous aerosols on climate. The simulations include control runs with 3 times the mass of carbonaceous aerosols as compared to the model’s default carbonaceous aerosol mass, as well as no-carbon runs in which carbonaceous aerosols were removed. The slab ocean model (SOM) and the fixed sea surface te...
متن کاملCarbonaceous aerosol tracers in ice-cores record multi-decadal climate oscillations
Carbonaceous aerosols influence the climate via direct and indirect effects on radiative balance. However, the factors controlling the emissions, transport and role of carbonaceous aerosols in the climate system are highly uncertain. Here we investigate organic tracers in ice cores from Greenland and Kamchatka and find that, throughout the period covered by the records (1550 to 2000 CE), the co...
متن کاملAssessment of carbonaceous aerosols in Shanghai, China: Long-term evolution, seasonal variations and meteorological effects
Carbonaceous aerosols are major chemical components of fine particulate matter (PM2.5) with major impacts on air quality, climate change, and human health. Gateway to fast-rising China and home of over twenty million people, Shanghai throbs as the nation's largest mega city and the biggest industrial hub. In a continuing effort to pursue economic growth, haze-plagued Shanghai also spearheaded C...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of the Air & Waste Management Association
دوره 64 8 شماره
صفحات -
تاریخ انتشار 2014